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Social factors have been shown to create differential burden of in-
fluenza across different geographic areas. We explored the relationship
between potential aggregate-level social determinants and mortality
during the 1918 influenza pandemic in Chicago using a historical
dataset of 7,971 influenza and pneumonia deaths. Census tract-level
social factors, including rates of illiteracy, homeownership, population,
and unemployment, were assessed as predictors of pandemic mortality
in Chicago. Poisson models fit with generalized estimating equations
(GEEs) were used to estimate the association between social factors
and the risk of influenza and pneumonia mortality. The Poisson model
showed that influenza and pneumoniamortality increased, on average,
by 32.2% for every 10% increase in illiteracy rate adjusted for
population density, homeownership, unemployment, and age. We
also found a significant association between transmissibility and
population density, illiteracy, and unemployment but not home-
ownership. Lastly, analysis of the point locations of reported
influenza and pneumonia deaths revealed fine-scale spatiotempo-
ral clustering. This study shows that living in census tracts with
higher illiteracy rates increased the risk of influenza and pneumo-
nia mortality during the 1918 influenza pandemic in Chicago. Our
observation that disparities in structural determinants of neigh-
borhood-level health lead to disparities in influenza incidence in
this pandemic suggests that disparities and their determinants
should remain targets of research and control in future pandemics.
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The influenza pandemic of 1918 is one of the most devastating
infectious disease outbreaks on record, with an estimated death

toll of 50 million worldwide (1). The deadly nature of the H1N1 virus
that caused the pandemic, the unique epidemiological features of the
pandemic, and the pathophysiology of deaths caused by this virus set
this pandemic apart from its successors and its predecessors alike (1).
Although there is evidence of substantial geographic variation in
mortality rates across countries (2) and even within cities (3), studies
of the 1918 pandemic in the United States (4, 5), the United King-
dom (6, 7), Europe (8), South America (9–11), and Asia (12, 13)
focus mainly on differences in onset of the pandemic, age-specific
mortality, and transmission of the virus across large geographic re-
gions. Few studies have explored the effects of sociodemographic
factors on differential mortality during the 1918 pandemic, despite
the known impacts of social inequalities on disease progression and
outcomes through decreased access to healthcare, overcrowding,
comorbidities associated with lower resources, lower nutritional sta-
tus, and a poor understanding of control measures because of lack of
education (14–17). One such study found that excess mortality from
1918 to 1920 was negatively associated with per-head income in many
countries (2). The authors attributed this association to a combina-
tion of community factors, such as healthcare access, and individual
factors, including comorbidities and nutritional status. However, they
were unable to separate an impact on incidence of infection from

increased case fatality rates, and also, they were unable to detect
variation in excess mortality within countries or even finer spatial scales.
Here, we investigate whether sociodemographic factors con-

tributed to the spatial variation in mortality observed within the
city of Chicago during the 1918 pandemic. To evaluate the spatial
and social dependencies of influenza mortality, we digitized his-
torical maps of point-level mortality incidence published shortly
after the pandemic and combined the spatial data with near-
contemporaneous US Census data. We constructed a Poisson
model with generalized estimating equations (GEEs) model to
explore the fine-scale effects of sociodemographic factors, in-
cluding illiteracy, homeownership, unemployment, and population
density, on influenza mortality. Illiteracy has been cited as the
closest approximation of socioeconomic and health status (18),
whereas high rates of homeownership and low rates of un-
employment are often considered predictors of improved financial
security, access to healthcare resources, and general health status
(19). To test the robustness of our results to the possibility that the
pandemic virus (or a related virus) infected significant numbers of
individuals in the spring of 1918 (referred to as a herald wave), we
used simulations to investigate the impact of an unobserved herald
wave on the observed sociodemographic relationships. We also
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The pervasiveness of influenza among humans and its rapid spread
during pandemics create a false sense that all humans are affected
equally. In this work, we show that neighborhood-level social de-
terminants were associated with greater burdens of pandemic in-
fluenza in 1918 and several other diseases in a major US city. We
show that literacy, homeownership, and unemployment were as-
sociated with cumulative influenza mortality as well as measures
of the speed of transmission using a unique dataset describing the
home location and week of death of individuals who died during
the influenza pandemic in 1918. Our results suggest that, similar to
other infectious diseases, social disparities should be a focus of
research and public health response in future pandemics.
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expanded our analysis to investigate the relationship of socio-
demographic covariates to diseases other than influenza.
This dataset of point-level mortality data and census tract-level

demographic data provides an opportunity to investigate pan-
demic influenza dynamics at a spatial scale rarely examined for the
1918 pandemic. Some studies have assessed influenza dynamics at
the state or county level (2, 20, 21), but temporal and spatial
variations have not been widely studied at within-city spatial scales
(3). There could be great variations in social status and disease
burden across small geographic units, such as census tracts, par-
ticularly in a city as large and diverse as Chicago, that might be
concealed by analysis at the country or state level. Quantifying the
relationship between social disparities and mortality can be helpful
for policymakers looking to optimize allocation of interventions
during future pandemics of similar severity.

Results
Demographic data from the 1920 census (22) and the home lo-
cation of pneumonia and influenza mortality data by week from
September 29 to November 16, 1918 (23) were available for 496
of Chicago’s 499 census tracts. There were 7,971 influenza and
pneumonia deaths in the 7-wk study period. The epidemic
peaked in the fourth week (Table S1). There was high mortality

incidence in the central and southcentral regions of the city,
whereas the northern, western, and southernmost areas of the
city experienced a lower disease burden (Fig. 1). The average
case fatality rate city-wide was 17.5% during the pandemic pe-
riod, although this rate is likely to be an overestimate because of
underreporting of nonfatal cases.

Relationship with Sociodemographic Factors. Fig. 2 shows the
weekly point pattern mortality overlaid on a map of illiteracy
rates by census tracts. The first deaths were observed in census
tracts with higher illiteracy rates. As the epidemic progressed,
the disease spread to the neighboring tracts but remained con-
centrated in the high-illiteracy areas.
A Poisson model fit with GEE was used to estimate average

mortality per census tract with robust variance. The clustering
variable in the model was the census tract, and the correlation in
data in each census tract was assumed to be unstructured. As-
suming correlation within census tracts, we analyzed association
between mortality and illiteracy rate, homeownership, un-
employment, and population density. The model also accounted
for any unknown correlations between the outcomes and was
offset by the total underlying population of each census tract.
The multivariate models were also adjusted for age, because
pandemic mortality was known to vary by age (1).
The univariate and multivariate analyses’ estimates for risk

ratios of mortality rate per census tract are presented in Table 1.
Univariate analysis found that illiteracy rate, homeownership,
and unemployment were independently statistically associated
with mortality. The association between population density and
incidence of mortality was nonsignificant. In the multivariate
model, for every 10% increase in illiteracy rate within a given
census tract, mortality increased by 32.2% [95% confidence in-
terval (95% CI) = 22.2%, 43.0%]. Mortality incidence decreased
by 33.7% (95% CI = 24.5%, 41.8%) per 10% increase in
homeownership, 19.6% (95% CI = 13.8%, 25.0%) per 10% in-
crease in unemployment rate, and 4.3% (95% CI = 3.1%, 5.5%)
per 10% increase in population density. All sociodemographic
predictors of mortality were statistically significant in the multi-
variate model. Mortality was statistically significantly associated
with the number of individuals in each census tract over the age
of 45 y old but not associated with the number of individuals in
other age classes (Table S2). Regression results were insensitive
to inclusion of week of epidemic in the analysis (Table S3).
To explore whether the Poisson model accounted for spatial cor-

relation in the data, Moran’s I (MI) statistic of autocorrelation was
calculated for model standardized residuals. The MI estimate for
model residuals was statistically significant (MI = 0.09, P < 0.001),
although significantly reduced compared with the MI estimate for the
raw mortality rates (MI = 0.14, P < 0.001), suggesting that the model
accounted for some of the existing spatial autocorrelation.
We investigated the relationship between illiteracy and other

diseases in earlier years in Chicago (SI Text) and found that

3.5 0 3.5 km

Cumulative mortality 
per 1000

0.00 - 2.38

2.39 - 4.48

4.49 - 9.32

9.33 - 20.59

N

Fig. 1. Cumulative incidence of influenza and pneumonia mortality per
1,000 by census tracts during the 7 wk of the epidemic in Chicago in 1918.
The three empty regions represent the three census tracts for which there
were no demographic data that were excluded from analysis. The south-
ernmost empty region is a lake.

Fig. 2. Point locations of influenza and pneumonia mortality occurring in each week from September 29 to November 16 superimposed on a choropleth map
showing illiteracy rates by census tracts in Chicago in 1918.

13840 | www.pnas.org/cgi/doi/10.1073/pnas.1612838113 Grantz et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
9,

 2
02

1 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612838113/-/DCSupplemental/pnas.201612838SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612838113/-/DCSupplemental/pnas.201612838SI.pdf?targetid=nameddest=ST2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612838113/-/DCSupplemental/pnas.201612838SI.pdf?targetid=nameddest=ST3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612838113/-/DCSupplemental/pnas.201612838SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1612838113


www.manaraa.com

illiteracy was significantly positively associated with all-cause mor-
tality, diphtheria, whooping cough, tuberculosis, and pneumonia
(Table S4). Illiteracy was negatively associated with incidence of
scarlet fever and measles.
We next used a GEE model to assess the relationship between

pandemic mortality rates and all-cause mortality and disease
burden at the ward level. Within Chicago, pandemic mortality
rates were negatively associated with rates of scarlet fever,
measles, and whooping cough infection and positively associated
with cases of tuberculosis and pneumonia (Table S5). Pandemic
mortality is significantly linearly associated with all-cause mor-
tality in Chicago and three other cities (Fig. S1).

Simulations of Spring Outbreak. There were reports of small influenza
outbreaks in Chicago in March of 1918 (24). Such herald waves were
common around the world but varied substantially in magnitude. In
Geneva, the first pandemic influenza wave occurred in July of 1918
and had an estimated R of less than one-half of that for the fall wave
(25). However, two other studies found that transmissibility was
significantly higher in the spring wave of three Scandinavian cities,
although lower case fatality rates in the spring meant the vast ma-
jority of deaths still occurred in the later fall wave (26, 27).
Although the spring wave in Chicago seems to have been isolated

to a handful of office buildings and industrial establishments (24), it
is possible that this herald wave targeted certain social classes more
than others, leaving disproportionately high levels of immune indi-
viduals in some census tracts. This underlying population immunity
would then impact the spread of the pandemic wave in the fall and
threaten our inferences about the impact of sociodemographic dis-
parities in the fall wave. To test this hypothesis, we simulated, with a
stochastic, fixed time step susceptible–infectious–recovered (SIR)
model, a spring wave in which all individuals in a given census tract
were initially susceptible and then, a fall wave in which only indi-
viduals who escaped the spring wave were susceptible. We tested
multiple initial conditions and relationships between transmissibility
and illiteracy and averaged the results of 1,000 simulations in each
census tract. A univariate GEE model predicted the relationship
between the final outbreak size of the fall wave and illiteracy.
In most cases where transmissibility was defined to be positively

associated with illiteracy in both waves, there was still a strong and
significant positive association between illiteracy rate and influenza
incidence in the fall wave (Fig. S2 and Table S6). When trans-
missibility was negatively related to illiteracy in both waves (that is,
the disease targeted higher social status individuals) and attack rates
were low, illiteracy was consistently negatively associated with pan-
demic incidence in the fall. At higher attack rates, however, or when
there was no social dependence imposed in the fall wave, the GEE
model could incorrectly predict a relationship between illiteracy and
pandemic incidence that does not match the defined relationship.
However, the coefficients of these falsely predicted associations are
much lower than those observed in the data (Table 1).

Reproduction Number Estimates and Association with Sociodemographic
Factors. Estimates of reproduction number, R, were calculated for
each census tract for the entire 7-wk period (Methods). Because of
the spring wave or cases early in the fall possibly inducing some level
of immunity in the population, these estimates are likely lower than
the true basic reproduction number, R0. The mean R was 1.22
(95% CI = 1.21, 1.23). Table 2 shows the relationship between
reproduction number estimates and sociodemographic factors. The

strongest correlation was found with population density. R also
significantly correlated with illiteracy and counterintuitively, was
negatively associated with unemployment. There was no significant
relationship between transmissibility and homeownership.
We calculated the reproduction number for each census tract

in each week of the epidemic to further explore the effects of
illiteracy and population density on transmission at multiple
points in the epidemic. Fig. 3A shows mean weekly reproduction
number estimates for census tracts grouped by illiteracy rate. As
expected, the census tracts with higher rates of illiteracy have
greater R estimates throughout the peak of the epidemic. There
is a statistically significant correlation between illiteracy and re-
production number in weeks 3–6 (Table S7). As the epidemic
slowed, the reproduction numbers for all tracts reduced toward
one, and the association between illiteracy and transmissibility
became weaker and eventually, nonsignificant. Interestingly,
when census tracts are grouped by population density, there is
not a clear relationship with transmissibility (Fig. 3B). Only in
week 2 is the correlation between population density and R
significant (ρ = 0.20, P = 0.001) (Table S7).

Spatial Dependence of Influenza Mortality. By visual inspection, the
map of cumulative mortality suggests that there was some spatial
clustering of influenza and pneumonia mortality at the census
tract level (Fig. 1). We used the spatiotemporal clustering statistic,
ϕ(d1, d2), to characterize spatial and temporal dependence of in-
dividual deaths (28, 29). This statistic estimates the probability of
any two deaths occurring within the same week and within a
spatial window of one another relative to the expectation if spatial
clustering and temporal clustering were independent (Methods).
Any underlying heterogeneities, like population density and
reporting rate, are included in the numerator and denominator of
this statistic and therefore, do not bias our estimates.
There is moderately strong spatiotemporal dependence of in-

dividual deaths at small spatial scales (Fig. 4). Influenza and
pneumonia deaths were more than 1.3 times more likely to occur
in the same week and within 100 m and roughly 1.2 times more
likely to occur in the same week and within 200 m given the un-
derlying spatial and temporal distributions. There is significant,
albeit much weaker, clustering at distances up to 1,500 m, beyond
which there is no significant spatiotemporal clustering.

Discussion
This study showed that the 1918 influenza pandemic had strong
patterns of spatial clustering and sociodemographic dependence.
Prior studies have produced contradictory views on the associa-
tion between influenza mortality and social status during the

Table 1. Results of univariate and multivariate GEE regression models of pandemic influenza mortality

Variables Univariate regression unadjusted RR (95% CI) Multivariate regression adjusted RR (95% CI)

Percentage illiterate 1.056 (1.048, 1.063) 1.028 (1.020, 1.036)
Population density (per acre) 1.001 (0.999, 1.002) 0.996 (0.994, 0.997)
Percentage homeowners 0.971 (0.961, 0.982) 0.960 (0.947, 0.972)
Percentage unemployed 0.958 (0.952, 0.964) 0.978 (0.972, 0.985)

Age was included but largely nonsignificant (Table S2). RR, risk ratio.

Table 2. Relationship between reproduction number and
sociodemographic factors at the census tract level

Variables Correlation coefficient (95% CI) P value

Population density 0.293 (0.249, 0.306) <0.001
Illiteracy 0.262 (0.239, 0.298) <0.001
Homeownership −0.071 (−0.038, −0.106) 0.11
Unemployment −0.136 (−0.114, −0.179) 0.002

Given by Spearman correlation coefficients; 95% CI generated from 1,000
bootstrapped resampled datasets.
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1918 pandemic. Some studies have argued that, because the 1918
H1N1 influenza virus was highly virulent, it indiscriminately
killed, regardless of social class (30, 31), whereas some studies
have proposed that sociodemographic differences affected mor-
tality during this pandemic at the scale of countries, provinces, and
counties (2, 7, 32, 33). This study found that, despite the highly
virulent nature of the virus, influenza did not behave in a wholly
democratizing fashion at the within-city scale. Rather, there was
significant spatial variation in influenza mortality associated with
sociodemographic factors, and there is evidence of localized
transmission. This study also found that several other infectious
diseases were associated with social factors, speaking to overall
higher disease burden in areas of lower social status.
Sociodemographic indicators were associated with both the

rate at which deaths per week increased (suggesting that trans-
mission was greater in areas of reduced socioeconomic status)
and increased cumulative mortality (suggesting increased in-
cidence of infection and/or case fatality rates) during the 1918
pandemic. Note that it is impossible for us to disentangle the
impact of these two mechanisms on cumulative mortality. The
fact that we observe associations between specific sociodemo-
graphic factors, transmissibility, and mortality during 7 wk of the
pandemic within a small geographic area allows us to refine
some of the hypotheses of mechanisms associating sociodemo-
graphic factors and pandemic mortality. Pandemic onset time
and physical geography, which may be important in explaining
country-wide variance in mortality, vary little within the city of
Chicago and are, therefore, unlikely to be important factors in

explaining the observed differential mortality. Illiteracy was
positively associated with mortality and transmissibility, likely
contributing to lower access to medical care as well as decreased
awareness and adoption of intervention measures proposed by
public health officials, which increases risk of infection and poor
clinical outcome (18). The latter explanation may be particularly
relevant to the city of Chicago, where strict public health mea-
sures, including mandatory quarantines, school closings, and bans
on public gatherings, are believed to have significantly reduced
the size of the pandemic (34). Underlying health conditions, like
chronic obstructive pulmonary disease, tuberculosis, and malnutri-
tion, are known to have a strong social gradient and likely associated
with census tracts with lower literacy rates (14, 16). Our findings that
illiteracy is significantly and positively associated with ward-level all-
cause mortality and incidence of several other infectious diseases in
the years before the pandemic speak to the probable lower un-
derlying health status of census tracts with higher illiteracy rates. In
fact, the only two diseases that were not positively associated with
illiteracy were measles and scarlet fever, which infected the over-
whelming majority of the general population in the prevaccination
era, and thus, heterogeneity in incidence rate across wards can
primarily be attributed to differences in reporting rates.
Rate of homeownership was significantly negatively related to

mortality in this study, likely a reflection of the higher income
and socioeconomic status of homeowners. More robust measures
of socioeconomic status, including poverty indices and per-capita
income, were not available in the 1920 census data. Interestingly,
it was observed that unemployment, assumed to be a measure of
low income and poverty, had a protective effect on influenza
mortality and was associated with decreased transmission. This
result might be an artifact of the method of quantifying un-
employment, which includes individuals who willingly elected not
to work and were likely of higher social status (Methods). Un-
employment may also result in fewer social interactions and less
migration to overcrowded regions, which would reduce risk of
infection and death. Finally, the highest mortality during the
pandemic was observed in 21–44 y olds, who also make up ma-
jority of the working population. The decrease in mortality might
reflect the fact that the unemployed population contained dis-
proportionately few members of the age class at the highest risk
of mortality compared with the general population.
The range of reproduction numbers across census tracts was

1.09–1.54, which is on the lower end of previous estimates for the
1918 pandemic (35–38). However, basic reproduction numbers
(R0) greater than three have been reported on small spatial
scales, such as military bases (39), prisons and ships (26), and
even in some cities (25). The lower estimates found in this study
could be the result of population immunity after a spring out-
break of this pandemic virus in Chicago or the impact of control
measures (24, 34).
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This study observed a significant association between trans-
missibility and population density at the census tract level, which has
not been observed at greater spatial scales (4, 7). The association
between R and population density may be a result of an increased
number of effective contacts between individuals in denser pop-
ulation tracts, but the relationship is confounded by the strong as-
sociations between population density and other sociodemographic
factors and the largely nonsignificant association between population
density and weekly R estimates (Tables S7 and S8). Moreover, the
increased transmissibility of influenza in more densely populated
census tracts did not translate into significantly higher mortality
risk, although population density has been linked to pandemic
influenza mortality at greater spatial scales (7, 11, 20).
It is important to note that this study uses influenza and pneu-

monia mortality data as a proxy for influenza incidence when esti-
mating reproduction numbers. When making inferences about
transmissibility, it is preferable to use data on all influenza cases, not
just those that resulted in death, to eliminate possible errors from
heterogeneity or secular changes in case fatality rates, but this in-
formation was not present in the available data. Our transmissibility
estimates may be more precise in census tracts with lower socio-
economic status, where there may have been more deaths per in-
fluenza infection because of worse preexisting health status and
access to healthcare expected in those census tracts. Additionally, it
has been shown that climate, particularly temperature and absolute
humidity, can have a substantial impact on transmissibility (40).
September of 1918 was unseasonably cold throughout Illinois, which
may have helped facilitate the rapid spread of influenza in the latter
half of the month (41). There are no data on humidity from this
time period, but it is unlikely that climate conditions would have
varied significantly enough by census tract to cause noticeable dif-
ferences in transmission at such fine spatial scales.
This study characterized the spatial dependence of influenza

deaths at the level of individual cases. The spatial analysis indi-
cates that influenza transmission and mortality were highly lo-
calized at small spatiotemporal scales. Deaths were more likely
to occur within the same week and a few hundred meters than
expected given the underlying spatial and temporal clustering,
speaking to the importance of neighborhood-level transmission
even in a mobile, urban population. Previous studies found sig-
nificant autocorrelation in influenza mortality across county
boroughs in England and Wales (42) and provinces in Spain (20),
but this study is unique in showing a spatial dependence in the
spread of individual influenza cases during the 1918 pandemic.
There are several limitations to this study. This study focuses

on only one wave of pandemic influenza in Chicago. Other
studies have shown significant differences in transmissibility and
mortality patterns of different waves of pandemic influenza in
1918 (7, 21). The social and spatial dependencies observed in this
study are likely at least partially context-specific and may not
hold true for different cities or pandemics. Our simulations in-
dicate that a spring herald wave could not fully explain the ob-
served mortality disparities; however, it may have affected
disease spread and mortality in Chicago and other regions. It is
important to note that our transmission model does not explicitly
account for possible heterogeneity in case fatality rates across
census tracts or introductions of cases from outside of the
community, both important potential drivers of disparities.
There is also potential misalignment between the census data
collected in 1920 and the true demographics of Chicago in 1918
that could bias these results. The MI estimate on the residuals of
the Poisson model suggests that the model accounted for some
but not all of the spatial autocorrelation and that there may be
unmeasured predictors of influenza and pneumonia mortality,
such as underlying comorbidities. The impacts of the public
health interventions implemented may have varied by census
tract and could also explain some variability not captured in the
model. Socioeconomic and demographic factors could also affect
reporting rates of mortality in different census tracts. In lower-
status census tracts, more deaths may have occurred at home,
and people may have been unaware of ways to report deaths,

leading to underreporting that would, in turn, cause the esti-
mates of association between social factors and mortality
obtained from this study to be underestimated.
Better understanding of the epidemiology of past pandemics is

critical in preparing for future pandemics. This study attempts to fill
some of the gaps surrounding the relationship between social status
and influenza mortality at the within-city spatial scale of the 1918
pandemic, one of the most studied and impactful infectious disease
outbreaks in recorded history. The significant associations between
pandemic mortality and sociodemographic factors as well as the
absence of a correlation with population density might have been
lost if studied on a state- or country-wide scale. Previous studies
indicated that the strain of influenza responsible for the 1918
pandemic was highly virulent and infected individuals indiscrimin-
ately and regardless of social status or spatial distribution (30, 31).
This study suggests that people living in underprivileged neigh-
borhoods, in fact, experienced significantly higher mortality and
that the outbreak spread in a spatiotemporally dependent manner.
The results from this study will help city public health authorities
decide how to optimally visualize their limited resources to improve
control strategies to minimize transmission and mortality.

Methods
Data Collection and Outcome Definitions. Census tract-level data on de-
mographic characteristics in 1920 were collected from the National Historical
Geographic Information System website (22). Influenza mortality data were
obtained from maps published in a report by the City of Chicago Department
of Health after the pandemic (23). Each paper map showed the point location
of the home address of individuals who died from influenza or pneumonia in
Chicago each week from September 29, 1918 to November 16, 1918. The maps
were scanned and georeferenced to raster files using ArcGIS. Locations of the
influenza deaths in 1918 were transferred from the digitized maps to a current
vector-based shapefile of Chicago. The report included the location of 7,971
influenza and pneumonia deaths in 496 census tracts in Chicago. There were
an additional 59 deaths in three census tracts for which there was no de-
mographic information available that were excluded from analysis. Spatial and
statistical analyses were performed using ArcGIS, version 10.1 and R (43).

Annual incidenceofpneumonia and several other infectiousdiseases in eachof
35 wards of Chicago from 1915 to 1918 was reported in the same City of Chicago
Department of Health report (23) (SI Text). We used overlapping shapefiles of
wards and census tracts and aggregated data from the constituent census tracts
to obtain demographic information in each ward. All-cause and pandemic
mortality data from 1912 to 1918 were collected from the Baltimore, Buffalo,
and Philadelphia Departments of Health annual reports (44–46).

Association Between Sociodemographic Factors and Mortality. The covariates
included in the Poisson model were age, population density (total population
divided by total area in acres of each census tract), illiteracy rate (number of
peopleover 10 yof agewhowere illiteratedividedby the total population in each
census tract), proportion of homeowners (number of people who owned houses
free and clear, with encumbrance, and with encumbrance status unknown di-
vided by total population in each census tract), and unemployment rate (number
of individuals not used in the nine most common professions included in the
census survey—agriculture/forestry, mining, factory, transportation, trade, public
service, professionals, domestic servants, and clerics—divided by total population
in each census tract). Age was categorized as in the original census data: less
than 1, 1–4, 5–10, 11–16, 16–20, 21–44, and 45 y old or older.

Univariate analysis was first performed to determine the association of
each covariate independently with mortality. A forward stepwise selection
approach was used to identify significant predictors in the multivariate
model. Population density and age were included in the multivariate model,
regardless of significance, because they are very strong confounders of the
relationship between sociodemographic factors and mortality. All P values
were two sided based on 95% significance levels.

Estimating Transmissibility and Social Determinants of R. R was estimated for
each census tract by substituting an initial exponential growth rate, λ, in an
expression derived from the SIR compartmental model

R= 1+
λ

γ
.

We assumed that influenza incidence grew exponentially for 3 wk after the first
influenza or pneumonia death was reported and calculated the initial growth
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rate, λ, from the epidemic curve of each census tract. The average infectious
period (1/γ, where γ is the mean recovery rate) was assumed to be 2.7 d (47). The
95% CIs for reproduction numbers were generated by creating 1,000 boot-
strapped resampled datasets of deaths in each census tract, repeating the esti-
mation procedure, and identifying the 2.5 and 97.5 percentiles of these
estimates. The 95% CIs on the regression coefficients of sociodemographic
covariates with reproduction numbers were created in a similar manner. The
correlation between reproduction number and sociodemographic variables in
each census tract was explored using Spearman rank correlation coefficients (7).

Analysis of Spatial Dependence. The ϕ clustering statistic [ϕ(d1, d2)] is de-
fined as the probability of two deaths occurring in a defined spatial
and temporal window relative to the independent probabilities of ob-
serving two deaths within the spatial window or within the temporal
window (29, 30)

ϕðd1,   d2Þ=  
Prðj∈Ωiðd1,  d2,  t1 =0, t2 = 1ÞÞ

Prðj∈Ωiðd1,   d2, · ÞÞPrðj∈Ωið · , t1 = 0,   t2 = 1ÞÞ  ,

where Ω i(d1, d2, t1 = 0, t2 = 1) is the set of all influenza deaths occurring
both within the (d1, d2) spatial window of case i and within 1 wk (t1 = 0, t2 =
1) of case i. Window size (d2 − d1) was kept constant at 100 m, and d2 ranged
from 100 m to 2.5 km; 95% CIs were calculated using the 2.5 and 97.5
percentiles of 1,000 bootstrap samples.
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